
 International Journal of Advanced and Applied Sciences, 4(6) 2017, Pages: 169-174  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

169 

 

Semi-implicit two-step hybrid method with FSAL property for solving 
second-order ordinary differential equations  

 
Nur Azila Yahya * 

 
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Tapah Road, 
Perak, Malaysia 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 3 March 2017 
Received in revised form 
16 May 2017 
Accepted 27 May 2017 

Two semi-implicit two-step hybrid methods of order five and six designed 
using First Same as Last (FSAL) property are developed for solving second-
order ordinary differential equation. The stability analysis is determined by 
the interval of periodicity and the interval of absolute stability. The 
numerical results carried out show that the new method has smaller 
maximum error than existing method of similar type proposed in scientific 
literature, using constant step-size. 
 

Keywords: 
Hybrid method  
Oscillatory solution 
Interval periodicity 
Interval of absolute stability 

© 2017 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

  

1. Introduction 

* In this paper we are interested in the numerical 
solution of initial value problems (IVPs) associated 
with special second-order ordinary differential 
equation (ODE) of the forms (Eq. 1) 

 
𝑦" = 𝑓(𝑥, 𝑦),    𝑦(0) = 𝑦𝑎 ,     𝑦′(0) = 𝑦𝑏 .                             (1) 

 
This problem does not incorporate the first 

derivative in 𝑓(𝑥, 𝑦) and the solution relates to 
oscillatory and periodic solutions. This type of 
problem commonly arises in the fields of applied 
sciences such as motion of planet in celestial 
mechanics, orbital problems, quantum mechanics 
and electronic. Since most differential equations of 
celestial mechanics take the form 𝑦" = 𝑓(𝑥, 𝑦), it is 
not surprising that the first attempts at developing 
methods for Eq. 1 were made by astronomers 
(Hairer et al., 1993). In recent years, the special 
second-order ODEs have been extensively studied by 
many researchers for solving IVPs relates to 
oscillatory and periodic problems. There has been 
many research on multistep methods done for Eq. 1, 
particularly the two-step hybrid method (HM) 
(Tsitouras, 2003; Coleman, 2003; Franco, 2006; Fang 
and Wu, 2008; Samat et al., 2012; Ahmat et al., 2013; 
Jikantora et al., 2015; Franco et al., 2014; Franco and 
Randez, 2016; Kalogiratou et al., 2016). In a previous 
work, Coleman (2003), he has investigated the order 
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condition of two-step hybrid method based on the 
theory of B-series. He discussed these order 
conditions for general class of two-step hybrid 
method for problem Eq. 1. 

A new class of explicit two-step hybrid method 
(EHM) which requires less number of stages per step 
has been developed by Franco (2006). He has 
considered EHM of order four up to order six. The 
study by Ahmad et al. (2013) developed semi-
implicit two-step hybrid method up to algebraic 
order five for solving oscillatory problems by taking 
dispersion relation and solving them together with 
algebraic conditions of the methods. Later, another 
study carried out by Jikantora (2015) also developed 
semi-implicit two-step hybrid method with fifth 
algebraic order with dispersion and dissipation of 
higher order.  

In this paper, we constructed semi-implicit two-
step hybrid method with algebraic order five and six 
with FSAL feature. The FSAL feature specifies that, 
the last row of coefficient matrix is same with the 
vector of output value coefficients. The interval of 
stability for new methods are also presented and 
followed by numerical experiments on second-order 
differential equation for oscillatory or periodic 
problems. An s-stage two-step hybrid method 
generally given by (Eqs. 2 and 3) 

 
𝑌𝑖 = (1 + 𝑐𝑖)𝑦𝑛 − 𝑐𝑖𝑦𝑛−1 + ℎ2 ∑ 𝑎𝑖𝑗𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑌𝑗)𝑠

𝑗=1        (2) 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2[𝑏1𝑓𝑛−1 + 𝑏2𝑓𝑛 + ∑ 𝑏𝑖𝑓(𝑡𝑛 +𝑠
𝑖=3

𝑐𝑖ℎ, 𝑌𝑖)]                      (3) 
𝑖 = 1, … , 𝑠  
 

The method consists of coefficients which is 
called the generating matrix, the vector output and 
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the vector abscissa which can be represented in 
Butcher tableau as shown in Table 1. 

 
Table 1: The coefficients of two-step hybrid method 

𝑐 𝐴 

 𝑏𝑇 
 

= 

𝑐1 𝑎1,1 ⋯ 𝑎1,𝑠 
⋮ ⋮ ⋱ ⋮ 

𝑐𝑠 𝑎𝑠,1 ⋯ 𝑎𝑠,𝑠 

 𝑏1  𝑏 
 

2. Preliminaries 

The method of the form Eq. 2 and Eq. 3 can be 
defined as Eqs. 4, 5, and 6. 

 
𝑌𝑖 = 𝑦𝑛−1,    𝑌2 = 𝑦𝑛,                     (4) 

𝑌𝑖 = (1 + 𝑐3) − 𝑐3𝑦𝑛−1 + ℎ2 ∑ 𝑎𝑖𝑗
𝑖
𝑗=1 𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑌𝑗)         (5) 

= 3, … , 𝑠  

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 [
𝑏1𝑓𝑛−1 + 𝑏2𝑓𝑛 +

∑ 𝑏𝑖𝑓(𝑡𝑛 + 𝑐𝑖ℎ, 𝑌𝑖)𝑠
𝑖=3

]                (6) 

 
where, ℎ𝑛 = 𝑡𝑛+1 − 𝑡𝑛 is the step size while 𝑓𝑛−1 and 
𝑓𝑛 represent approximations for 𝑓(𝑡𝑛−1, 𝑦𝑛−1) and 
𝑓(𝑡𝑛, 𝑦𝑛) respectively. The method only requires to 
evaluate 𝑠 − 1 function evaluation namely 
𝑓(𝑡𝑛, 𝑦𝑛), 𝑓(𝑡𝑛 + 𝑐3ℎ, 𝑌3), …, 𝑓(𝑡𝑛 + 𝑐𝑠ℎ, 𝑌𝑠) in each 
step. Therefore, this method is considered as two-
step hybrid method with 𝑠 − 1 stages per step. The 
tableau of semi-implicit two-step hybrid method 
with FSAL (SIHMF) feature is as in Table 2 

 
Table 2: The coefficients of SIHMF 

−1 0     
0 0 0    
𝑐3 𝑎3,1 𝑎3,2 𝛾   
⋮ ⋮ ⋮ ⋱ 𝛾  

𝑐𝑠 𝑎𝑠,1 𝑎𝑠,2 ⋯ 𝑎𝑠,𝑠−1 𝛾 

 𝑏1 𝑏2 ⋯ 𝑏𝑠−1 𝛾 

 
The diagonal elements 𝑎33, 𝑎44 … , 𝑎𝑠𝑠  in Table 2 

are denoted by 𝛾. The vector output 𝑏𝑇 
corresponding to the output approximation is 
identical to the last row of𝐴. The s-stage implicit 
two-step hybrid method parameters are given by 

 
𝑐𝑠 = 1,   𝑎𝑠𝑗 = 𝑏𝑖  
 

where, 𝑗 = 1, … , 𝑠. 
 

In this case, FSAL specifies the s-stage to be the 
same as the first-stage at the next step given by 

 
𝑓𝑠 = 𝑓(𝑥𝑛+1, 𝑦𝑛+1) = 𝑓(𝑥𝑛 + 𝑐𝑠ℎ, (1 + 𝑐𝑠)𝑦𝑛 − 𝑦𝑛−1 +
∑ 𝑎𝑠𝑗𝑓𝑗)𝑠

𝑖=1 = 𝑓(𝑥𝑛 + ℎ, 2𝑦𝑛 − 𝑦𝑛−1 + ∑ 𝑏𝑖𝑓𝑖)𝑠
𝑖=1 .  

 

In order to investigate the phase property of two-
step hybrid method for solving initial value problem 
Eq. 1 we consider the second order linear test 
equation as proposed by Franco (2006) (Eq. 7) 

 

𝑦" = −𝜆2(𝑡)                    (7) 
 

If Eq. 2 and Eq. 3 are applied to the test problem 
Eq. 7, hence it can be written in the vector form as 
Eqs. 8 and 9 

 

𝑌 = (𝑒 + 𝑐)𝑦𝑛 − 𝑐𝑦𝑛−1 − 𝐻2𝐴𝑌           𝐻 = 𝜆ℎ,                  (8) 

 𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 − 𝐻2𝑏𝑇𝑌,                  (9) 
 

where 𝑌 = (𝑌1, … , 𝑌𝑠)𝑇 , 𝑐 = (𝑐1, … , 𝑐𝑠)𝑇  and 𝑒 =
(1, … ,1)𝑇 . Solving equation in Eq. 8 we obtain Eq. 10 

 

𝑌 = (𝑒 + 𝑐)𝑦𝑛(𝐼 + 𝐻2𝐴)−1 − 𝑐𝑦𝑛−1(𝐼 + 𝐻2𝐴)−1,           (10) 
 

where  
 

 (𝐼 + 𝐻2𝐴)−1 = 1 − 𝐻2𝐴 + 𝐻4𝐴2 = 1 − 𝐻2𝐴 + 𝐻4𝐴2 −
⋯ + (−1)𝑠−2𝐻2𝑠−4𝐴𝑠−2.  

 

Substituting Eq. 10 in Eq. 9, then the following 
recursion relation is obtained Eq. 11: 

  
𝑦𝑛+1 − 𝑆(𝐻2)𝑦𝑛 + 𝑃(𝐻2)𝑦𝑛−1 = 0,                                      (11) 

 
where  
 

𝑆(𝐻2) = 2 − 𝐻2𝑏𝑇(𝐼 + 𝐻2𝐴)−1(𝑒 + 𝑐) and 
𝑃(𝐻2) = 1 − 𝐻2𝑏𝑇(𝐼 + 𝐻2𝐴)−1𝑐  

 

use 𝑆(𝐻2), and 𝑃(𝐻2) to define dispersion error and 
dissipation error.  

 

Definition 1: The quantities 𝜑(𝐻) and 𝑑(𝐻) are 
called the dispersion error (or phase-error) and 
dissipation error, respectively (Eq. 12) 
 

𝜑(𝐻) = 𝐻 − 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑆(𝐻2)

2√(𝐻2)
)               (12) 

𝑑(𝐻) = 1 − √𝑃(𝐻2).  
 

According to Simos et al. (2003), the dispersion is 
the angle between the true and the approximate 
solution and the dissipation is the distance from a 
standard cyclic solution. The method is said to be 
dispersive of order 𝑞  and dissipative of order 𝑟, if 

 
𝜑(𝐻) = (𝐻𝑞+1)         𝑑(𝐻) = (𝐻𝑟+1) 
 

the stability of two-step hybrid method will be 
calculated using the interval of periodicity and 
interval of absolute stability which are determined 
by characteristic polynomial.  

 
Definition 2: The polynomial (Eq. 13) 
 

𝜉2 − 𝑆(𝐻2)𝜉 + 𝑃(𝐻2) = 0                 (13) 
 
is called characteristic polynomial of Eq. 11. Two-
step hybrid method has periodicity interval if 
coefficient of Eq. 13 satisfy the condition (Eq. 14) 
 
𝑃(𝐻2) ≡ 1,    |𝑆(𝐻2)| < 2,    ∀𝐻 ∈ (0, 𝐻𝑃)              (14) 

 
The method satisfies the condition Eq. 14 are 

called zero dissipative (𝑑(𝐻) = 0). When the 
methods have a finite order of dissipation, means the 
interval of periodicity is (0, ∝), the integration 
process is stable or remains bounded if the 
coefficient Eq. 13 satisfy the conditions (Eq. 15) 

 
|𝑃(𝐻2)| < 1,   
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and 
 
|𝑆(𝐻2)| < 1 + 𝑃(𝐻2)                (15) 
∀𝐻 ∈ (0, 𝐻𝑠)  

 
The two-step hybrid method are derived by using 

order conditions  which are the set of simultaneous 
equations which contain the coefficients. The 
solution of simultaneous equations gives the value of 
coefficients in terms of the free parameter associated 
to the local truncation error 𝑒𝑝+1. The coefficients 

are then substituted into the error constant 𝐸𝑝+1.  

The minimized value of the free parameter is 
obtained by optimizing the error constant with 
respect to the free parameter. The 𝑝th-order error 
constant is a quantity defined by 

 
 𝐸𝑝+1 = ‖𝑒𝑝+1(𝑡1), … , 𝑒𝑝+1(𝑡𝑘)‖

2
  

 = √𝑒𝑝+1(𝑡1)2 + ⋯ + 𝑒𝑝+1(𝑡𝑘)2   

 
where, 𝑘 is the number of trees of order 𝑝 +
2(𝜌(𝑡𝑖) = 𝜌 + 2) and 𝑒𝑝+1(𝑡𝑖) is local truncation 

error as defined in Coleman (2003). The order 
conditions up to algebraic order six given in Coleman 
(2003) are (Eqs. 17, 18, 19, 20, 21, 22) 

 
Order 2 
∑ 𝑏𝑖 = 0,                 (17) 
Order 3 
∑ 𝑏𝑖𝑐𝑖 = 0                 (18) 
Order 4 
∑ 𝑏𝑖𝑐𝑖

2 =
1

6
,                 (19) 

Order 5 
∑ 𝑏𝑖𝑐𝑖

3 = 0,  ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗 = 0                                (20) 

Order 6 
∑ 𝑏𝑖𝑐𝑖

4 =
1

15
, ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗 = −

1

60
               (21) 

∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗
2 =

1

180
  

 
and together with simplifying condition 

 

∑ 𝑎3𝑗 =
𝑐3

2+𝑐3

2
, ∑ 𝑎4𝑗 =

𝑐4
2+𝑐4

2
                (22) 

3. Derivation of method SIHM with FSAL property 

Presented in this section is the derivation of semi-
implicit two-step hybrid method of order five 
designed using FSAL property. 

3.1. Fifth order SIHM  

In this case, FSAL specifies the four-stages to be 
the same as the first-stage at the next step given by 

 
𝑓4 = 𝑓(𝑥𝑛+1, 𝑦𝑛+1) = 𝑓(𝑥𝑛 + 𝑐4ℎ, (1 + 𝑐4)𝑦𝑛−𝑦𝑛−1 +

∑ 𝑎4𝑗𝑓𝑗
4
𝑖=1 ) = 𝑓(𝑥𝑛 + ℎ, 2𝑦𝑛−𝑦𝑛−1 + ∑ 𝑏𝑖𝑓𝑖

4
𝑖=1 )  

 
The fourth-stage two-step hybrid method 

parameters are given by 
 

𝑐4 = 1,   𝑎4𝑗 = 𝑏𝑖 ,    𝑗 = 1,2,3,4 

To derive fifth-order SIHMF method, we use the 
algebraic order conditions Eq. 17, Eq. 20 and Eq. 22. 
There are six equations and seven unknowns that 
have to be satisfied giving one free parameter which 
is chosen to be 𝑏3. The system of equations are 
solved simultaneously to obtain the values of 
coefficients in terms of 𝑏3 which are given by the 
expression 

 

𝑏1 =
1

12
,    𝑏2 =

5

6
,    𝑐3 = 1,  

𝑎31 = 0,    𝑎32 =
11

12
+ 𝑏3,    𝑎33 = −𝑏3 +

1

12
  

 
by minimizing constant error in Eq. 16 we have 

 
𝑏3 = 0  
 
and 
 
𝐸5 = 3.0619 × 10−2  

 

This method is denoted as SIHMF5 and can be 
expressed diagrammatically as in Table 3. The 

interval of periodicity is given by (0, √6). 

 
Table 3: The coefficients of SIHFM of order five 

−1     
0     

1 0 
11

12
 

1

12
  

1 
1

12
 

5

6
 0 

1

12
 

 
1

12
 

5

6
 0 

1

12
 

3.2. Sixth order SIHM  

In this case, FSAL specifies the five-stages to be 
the same as the first-stage at the next step given by 

 
𝑓5 = 𝑓(𝑥𝑛+1, 𝑦𝑛+1) = 𝑓(𝑥𝑛 + 𝑐5ℎ, (1 + 𝑐5)𝑦𝑛−𝑦𝑛−1 +

∑ 𝑎5𝑗𝑓𝑗
5
𝑖=1 ) = 𝑓(𝑥𝑛 + ℎ, 2𝑦𝑛−𝑦𝑛−1 + ∑ 𝑏𝑖𝑓𝑖

5
𝑖=1 ).  

 
The fifth-stage two-step hybrid method 

parameters are given by 
 

  𝑐5 = 1,      𝑎5𝑗 = 𝑏𝑖 ,      𝑗 = 1,2,3,4,5. 

 
To derive the new method, we use the algebraic 

order conditions Eq. 17 and Eq. 22. There are 10 
equations and 12 unknowns that have to be satisfied 
giving two free parameter which is chosen to be 𝑐4 
and 𝛾. Solving all conditions simultaneously to 
obtain the values of coefficients in terms 𝑐4 and 𝛾. By 

minimizing constant error Eq. 4, we obtain 𝛾 = −
1

40
 

and 𝑐4 =
163

100
 and 𝐸6 = 4.4213 × 10−2. This method is 

denoted as SIHMF6 and can be expressed 
diagrammatically as in Table 4. The interval of 
absolute stability is given by (0, 2.18). 

4. Results and discussion 

In this section, we present five problems which have 
oscillatory solution. All the problems will be tested 



Nur Azila Yahya/ International Journal of Advanced and Applied Sciences, 4(6) 2017, Pages: 169-174 

172 
 

by the semi-implicit FSAL methods to evaluate the effectiveness of new method.
 

Table 4: The coefficients of SIHMF of order six 
−1      
0      

473

273
 −

1517188651

2441570040
 

3679020971

1220785020
 −

1

40
   

163

100
 −

2837920975353

5968000000000
 

9971265867353

3784000000000
 

25011725096631

2822864000000000
 −

1

40
  

1 
89909

1177188
 

401875

462594
 −

5554571841

19767105160
 

130000000

360228207
 −

1

40
 

 
89909

1177188
 

401875

462594
 −

5554571841

19767105160
 

130000000

360228207
 −

1

40
 

 

The fifth order method, SIHMF5 is compared with 
semi-implicit hybrid method of order five with four-
stages derived by Ahmad et al. (2013) and explicit 
two-step hybrid method of order four with three-
stages derived by Franco (2006). The sixth order 
method is compared with two other methods 
derived by Franco (2006).  

The methods that have been used in comparisons 
are denoted by 

 
(i) SIHM4(5): Fifth order semi-implicit method with 

four-stage derived by Ahmad et al. (2013). 
(ii) EHM4: Fourth order explicit hybrid method with 

four-stage derived by Franco (2006). 
(iii) EHM6: Sixth order explicit hybrid method with 

five-stage derived by Franco (2006). 
(iv) EHM5: Fifth order explicit hybrid method with 

four-stage derived by Franco (2006). 
 
The criterion used in the numerical comparison is 

decimal logarithm of the maximum error versus 
step-sizes required by each method. 

 
Absolute error =  max error |𝑦(𝑡𝑛) − 𝑦𝑛|  
 

where, 𝑦(𝑡𝑛) is exact solution and 𝑦𝑛 is approximate  
solution. The test problems used are listed below: 

 
Problem 1: Homogeneous Problem studied by 
Franco (2006) 
 
 𝑦" = −𝑦          𝑦(0) = 0            𝑦′(0) = 1 

 
Exact solution is 𝑦 = sin (𝑥). The numerical results 
are shown in Fig. 1 and Fig. 2. 
 

 
Fig. 1: The efficiency curve for SIHMF5 method for 

Problem 1 with ℎ = 0.125 2𝑖 , 𝑖 = 2,3,4,5⁄  
 

 
Fig. 2: The efficiency curve for SIHMF6 method for 

Problem 1 with ℎ = 0.125 2𝑖 , 𝑖 = 2,3,4,5⁄  

 
Problem 2: The two-body gravitational problem 
studied by Dormand et al. (1987)  
 

   𝑦1
" =

−𝑦1

(√𝑦1
2+𝑦2

2)
3 ,      𝑦1(0) = 1 − 𝑒,        𝑦1

′ (0) = 0,  

   𝑦2
" =

−𝑦2

(√𝑦1
2+𝑦2

2)
3 ,      𝑦2(0) = 0,        𝑦2

′ (0) = √
1+𝑒

1−𝑒
,  

 

with 𝑒 representing the eccentricity of an orbit. The 
exact solution is 𝑦1(𝑥) = 𝑐𝑜𝑠(𝐸) − 𝑒 and 𝑦2 =

√1 − 𝑒2sin (𝐸) with satisfies the Kepler’s equation 
𝑥 = 𝐸 − 𝑒𝑠𝑖𝑛(𝐸). Numerical results is for the case 
𝑒 = 0. The numerical results are shown in Fig. 3 and 
Fig. 4. 
 

 
Fig. 3: The efficiency curve for SIHMF5 method for 

Problem 2 with ℎ = 0.125 2𝑖 , 𝑖 = 2,3,4,5⁄  
 

Problem 3: Orbital Problem studied by Van der 
Houwen and Sommeijer (1989) 
 

𝑦1
" = −4𝑥2𝑦1 −

2𝑦2

√𝑦1
2+𝑦2

2
,   𝑦1(0) = 1,    𝑦1

′ (0) = 0,  

𝑦2
" = −4𝑥2𝑦2 −

2𝑦1

√𝑦1
2+𝑦2

2
,      𝑦2(0) = 0,        𝑦2

′ (0) = 0,  

E
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exact solution is 𝑦1(𝑥) = cos2(𝑥) and 𝑦2(𝑥) =
sin2(𝑥). The numerical result are shown in Fig. 5 and 
Fig. 6. 
 

 
Fig. 4: The efficiency curve for SIHMF6 method for 

Problem 2 with ℎ = 0.125 2𝑖 , 𝑖 = 3,4,5,6⁄  
 

 
Fig. 5: The efficiency curve for SIHMF5 method for 

Problem 3 with ℎ = 0.125 2𝑖 , 𝑖 = 2,3,4,5⁄  

 
Problem 4: Two-body problem studied by Franco 
(2003) 

 

𝑦1
" + 𝜔2𝑦1 =

2𝑦1𝑦2−sin (2𝜔𝑥)

√(𝑦1
2+𝑦2

2)3
, 𝑦1(0) = 1,   𝑦1

′ (0) = 0,  

𝑦2
" + 𝜔2𝑦2 =

𝑦1−𝑦2−cos(2𝜔𝑥)

√(𝑦1
2+𝑦2

2)3
,   𝑦2(0) = 0,   𝑦2

′ (0) = 𝜔  

 
where 𝜔 = 1 The exact solution is 𝑦1(𝑥) = cos(𝑥) 
and 𝑦2(𝑥) = sin (𝑥). The numerical results are shown 
in Fig. 7 and Fig. 8. 

 
Problem 5: an almost periodic orbit problem given 
in Stiefel and Bettis (1969) 

 
𝑦1

" = −𝑦1 + cos (𝑥),      𝑦1(0) = 1,        𝑦1
′ (0) = 0,  

𝑦2
" = −𝑦2 + sin(𝑥),      𝑦2(0) = 0,        𝑦2

′ (0) = 0.9995,  

 
exact solution is 𝑦1(𝑥) = cos(𝑥) + 0.0005𝑥 sin(𝑥) 
and 𝑦2(𝑥) = sin(𝑥) − 0.0005𝑥 cos(𝑥). The numerical 
results are shown in Fig. 9 and Fig. 10 

From Fig. 3, Fig. 5 and Fig. 7, we observed that the 
new SIHMF5 is performed better compared to 
SIHM4(5) and EHM4. However in Fig. 1 shows that 
SIHM4(5) is performed better than SIHMF5 and 
EHM4. While in Fig. 9 we observed that, all methods 
have almost equal performance. 

From Fig. 2, Fig. 4, Fig. 6, Fig. 8 and Fig. 10 we 
observed that the new SIHMF6 have almost equal 
performance with EHM6 and EHM5. 

 

 
Fig. 6: The efficiency curve for SIHMF6 method for 

Problem 3 with ℎ = 0.125 2𝑖 , 𝑖 = 2,3,4,5⁄  
 

 
Fig. 7: The efficiency curve for SIHMF5 method for 

Problem 4 with ℎ = 0.1 2𝑖 , 𝑖 = 0,1,2,3⁄  
 

 
Fig. 8: The efficiency curve for SIHMF6 method for 

Problem 4 with ℎ = 0.1 2𝑖 , 𝑖 = 0,1,2,3⁄  
 

 
Fig. 9: The efficiency curve for SIHMF5 method for 

Problem 5 with ℎ = 0.1 2𝑖 , 𝑖 = 0,1,2,3⁄  
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Fig. 10: The efficiency curve for SIHMF6 for Problem 5 

with ℎ = 0.1 2𝑖 , 𝑖 = 0,1,2,3⁄  

5. Conclusion 

Two semi-implicit two-step hybrid method of 
order five and six designed using FSAL property for 
solving second-order IVPs with oscillatory solution 
are derived. The results of comparison based on 
maximum error evaluation at different step-sizes 
were used for comparison purpose as shown in Figs. 
1–10. Our new method, SIHMF5 and SIHMF6 can be 
an alternative method for solving oscillatory 
problems and can be advantageous to the Science 
and Technology fields. 
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